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refinement for low-symmetry SSG pe4~ with har- 
monic displacive modulations and with 44 positional 
parameters was performed. It yielded an R factor of 
0.054. Results of all these refinements are collected in 
Table 4. For the last two refinements corresponding 
atomic positional coordinates in the superstructure 
are not exactly related by the inversion centre (the 
discrepancy exceeds a few standard deviations). 
However, taking into account the number of struc- 
tural parameters and the minor differences in R 
values obtained by different models, it can be con- 
cluded that the SSG description of the TaTe4 struc- 
ture at room temperature with DPa/ncc - ~r~ as well as the 
corresponding centrosymmetric SG P4/ncc, represent 
very good approximations. 

5. Conclusions 

It is shown that the room-temperature TaTe4 super- 
structure (2a x 2a x 3c) can be described as a com- 
mensurately modulated basic structure (2a x 2a x c) 
with q = (00~). The SSG pe4/~ describes not only the 
structural symmetry and relations between coordi- 
nates of groups of atoms but also predicts extinction 
rules which are, together with additional conditions 
on reflections, in agreement with experiment. The 
origin of these additional limitations is also 
explained. 

Analysis of different 'real' sections through the 
supercrystal gives a more general insight into the 
problem of centro- or noncentrosymmetricity of the 
room-temperature TaTe4 modulated structure. The 
refinements show that the choice of SG P4/ncc 
(Bronsema et al., 1987) is justified on basis of a 
reduced number of parameters needed for the struc- 
ture description. It is also shown that this reduction 

does not, at least significantly, increase the discrep- 
ancy factor R. 
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Secretary of the International Union of Crystal- 
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Abstract 

A complete single-crystal X-ray data set with 1807 
unique reflections has been measured for the meta- 
stable decagonal phase of the system A1-Mn with the 
composition A178(E)MnE2(2 ). A Patterson analysis 
describing the quasicrystal in five-dimensional space 
has been carried out in which full lattice periodicity 

0108-7681/89/060534-09503.00 

is restored and a structure model suggested. The 
quasicrystal has superspace group PlOs/mmc and is 
built up by six non-equidistant slightly puckered 
layers two of which are in the asymmetric unit. To a 
first approximation each layer can be represented by 
a different decorated partial Penrose pattern. With 
the aid of higher-dimensional Patterson analysis, the 
local isomorphism class was determined. Displacive 
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disorder is present perpendicular rather than parallel 
to the aperiodic layers. 

Introduction 

The discovery of the first decagonal phase in the 
system AI-Mn (Bendersky, 1985) and subsequent 
observations of decagonal phases in many other 
binary and ternary alloys (cf. Steurer & Mayer, 1989) 
have led to numerous attempts to elucidate the struc- 
tures of these two-dimensional quasicrystals. Because 
of the lower symmetry and the layer structure, the 
structure solution is much more difficult than for the 
icosahedral phases. Indeed, for some icosahedral 
phases structure refinements have been carried out 
successfully in a semi-quantitative way (Elswijk, de 
Hosson, van Smaalen & de Boer, 1988) whereas, 
owing to the lack of appropriate single crystals, 
nothing comparable has been possible for the de- 
cagonal phases. Therefore, besides the fundamental 
theoretical studies of the characteristics of two- and 
three-dimensional quasicrystals (Jarir, 1986; Levine 
& Steinhardt, 1986; Socolar & Steinhardt, 1986), 
electron diffraction and spectroscopical investiga- 
tions have quantitatively determined only partial 
aspects of the two-dimensional quasicrystalline struc- 
tures. 

All diffraction studies on the decagonal phase of 
AI-Mn except that of Steurer & Mayer (1989) have 
been performed using selected-area and convergent- 
beam electron diffraction (Bendersky, 1985) or, in 
some rare cases, X-ray powder diffraction (Koop- 
mans, Schurer, van der Woude & Bronsveld, 1987). 
With these techniques the point symmetry and the 
metrics of decagonal A1-Mn have been obtained. It 
was shown by Ho (1986) that though the metrics of 
the reciprocal lattices of the icosahedral and de- 
cagonal phases are closely related to each other their 
real structures differ by more than small atomic 
shifts. These relationships are also discussed by 
Fung, Yang, Zhou, Zhao, Zhan & Shen (1986). They 
demonstrate that the symmetry of decagonal A1-Mn 
can be obtained by introducing into icosahedral 
A1-Mn a set of reflection planes normal to the 
existing ones which intersect in a fivefold axis. These 
additional mirror planes prohibit a closer structural 
relationship between these quasicrystalline phases. 

The local order of decagonal A1-Mn has been 
studied by EXAFS, NMR and Mrssbauer tech- 
niques. Bridges, Boyce, Dimino & Giessen (1987) 
found from their EXAFS measurements that the 
average number of AI atoms surrounding a central 
Mn atom is eight for the decagonal phase, smaller 
than the ten observed for the icosahedral phase. On 
this basis, they are of the opinion that the two phases 
have very different structures. EXAFS investigations 
by Schurer, van Netten & Niesen (1988) suggested 9 

___ 1 nearest-neighbour A1 atoms and a different 
structural inteqgretation. They assume a high simi- 
larity of both structures with the same icosahedral 
basic elements (Mackay icosahedra, for example). 

Mrssbauer-effect studies (Koopmans, Schurer, 
van der Woude & Bronsveld, 1987) show that the 
local iron environment in decagonal AI-(Mn,Fe) is 
similar but less asymmetric than in the icosahedral 
phase and that the (Fe,Mn) atoms have A1 next- 
nearest neighbours only. 

A comparative discussion of the different perio- 
dicities along the tenfold axis of the decagonal quasi- 
crystals of different composition, and of the possible 
relations to the respective crystalline phases, has 
been undertaken by Li & Kuo (1988) and He, Wu & 
Kuo (1989). They demonstrate that the translational 
periods are always multiples of a 4 A basic double 
layer. Examples with one-, two-, three- and fourfold 
superperiods are presented and compared with the 
lattice parameters of the crystalline phases. In the 
case of the system A1-Mn the tenfold axis corre- 
sponds to the b axis of AI~1Mn4. 

A detailed discussion of the possible structures of 
decagonal A1-Mn and decagonal A1-Fe has been 
given by Ishihara & Yamamoto (1988) and 
Yamamoto & Ishihara (1988). They interpret the 
electron diffraction patterns with models consisting 
of four kinds of layers which represent partial Pen- 
rose patterns. Projecting the crystal structure down 
the tenfold axis the complete Penrose pattern is 
obtained again. 

The fundamental problem with all the structure 
investigations up to now is that all discussions deal 
only with the best way of decorating a quasilattice 
with atoms and do not consider how to select the 
right quasilattice. Hence, the original Penrose tiling 
has always been chosen as a model for the quasilat- 
tice in a completely arbitrary manner. As mentioned 
by Steinhardt (1987), an infinite number of different 
general Penrose quasilattices exist which belong to 
different local isomorphism classes and give, if 
selected for a decoration with atoms, different quasi- 
crystal structures with, however, only slightly differ- 
ent diffraction patterns. This has to be taken into 
account to perform a correct structure analysis, and 
if the decoration method is used the correct quasilat- 
tice has to be determined first. However, as pointed 
out by Jari6 (1986) it would not be possible generally 
to separate the problem of the determination of the 
local isomorphism class from that of the decoration 
of the quasilattice by atoms. 

This is a strong argument for higher-dimensional 
structure analysis (cf Janssen, 1986a,b). In this 
approach, the aperiodic structure is embedded in an 
appropriate higher-dimensional space/R, so that full 
lattice periodicity is obtained. Then the real 
quasicrystal structure results as a section of the 
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n-dimensional supercrystal with three-dimensional 
physical space. The main problem with this descrip- 
tion is to obtain the correct analytical expression for 
the atoms of such a supercrystal as this might involve 
rather complicated hypersurfaces (Bak, 1986). 

A good start for a structure analysis of decagonal 
A1-Mn, therefore, is to study the n-dimensional 
Fourier transform of the X-ray diffraction pattern. 
In other words this necessitates carrying out a 
higher-dimensional Patterson analysis, without the 
need for a structural model, and learning something 
about the distribution and the shape of the n- 
dimensional atoms in the n-dimensional unit cell. 
The type of quasicrystalline arrangement of the 
atoms in the layers, i.e. the local isomorphism class 
and the decoration of the quasilattice then result 
automatically from the section of the supercrystal 
structure with physical space. The present work 
represents the first step of such a study. 

Symmetry and metr ics  

A detailed analysis of the X-ray diffraction patterns 
of the decagonal phase in the system A1-Mn (Steurer 
& Mayer, 1989) shows that the point symmetry of 
the reciprocal lattice is l O / m m m  (Dmoh). All reciprocal 
lattice vectors of each quasiperiodic reciprocal lattice 
layer can be represented by linear combinations of 
five basis vectors pointing to the corners of a regular 
pentagon a* = a*(cos2zr//5, sin2zr//5, 0) with i = 
0,...,4. The vector components refer to a Cartesian 
coordinate system with unit vectors vm, v2 and v3. 
Four of the five vectors are rationally independent. 
This is the same basis-vector set as used for the 
description of the hypothetical diffraction pattern of 
the Penrose tiling (cf. Janssen, 1986a,b). Perpendicu- 
lar to the plane formed by this basis-vector set and 
parallel to the tenfold axis a further reciprocal basis 
vector a~ = a~(0,0,1) is required. The set M* of all 
reciprocal vectors HE = X~=lhia* remains invariant 
under the action of the symmetry operators of the 
group D~oh. For the tenfold rotation ~ the reflection 
plane I~ and the inversion center ~,, the matrix 
representations are 

0 0 0  

r(a)= o o 

0 0  

l'(~= 

given by 

1 0  0 1 0  

0 0  r ~ =  1 0 0  

0 0  0 0 0 ~  

O1 " 0 0 0 0  

T O 0 0 0  ~ 

ii- 
1 0 0 0  

m 

0 1 0 0  

0 0 1 0  

0 0 0 1  

Now we follow the scheme given by Janssen (1986b) 
to derive the basis for embedding our quasilattice of 
rank five in the five-dimensional space/Rs. It would 
not be correct to take the decagonal lattice derived 
for the two-dimensional Penrose tiling and simply 
add a fifth basis vector [as was done by Yamamoto 
& Ishihara (1988)]. The characters of the 
representation of Dlo X(e,a, a2,a3,aa,a'5,fl, afl) = 
X(5,2,0,2,0,-3,1,1) correspond to the sum of the 
characters of the irreducible representations I'5 + I'~ 
+ F7 [cf. Tables 1 and 2 of Janssen (1986b)]. Using 
these decompositions our matrix representation F(a), 
for example can be written in the form 

cosa - s i n a  0 0 i / 
sina cosa 0 0 

F(t0 = i 0 1 0 
0 0 cos3a - s i n 3 a  
0 0 sin3a cos3a ] 

: 0 )  
Fi(a) " 

The five-dimensional configurational space V can be 
decomposed in this way into two orthogonal sub- 
spaces: the three-dimensional physical (external, 
parallel) space VE and the two-dimensional com- 
plement (internal, perpendicular) space V~. From the 
matrix representation we find that a 36 ° rotation in 
the physical space is accompanied by a 108 ° rotation 
in the internal space (coupling factor 3). For the 
two-dimensional Penrose quasilattice embedded in 
the/R4 (Janssen, 1986b) there is a coupling factor of 
2. 

A basis for the representation of the lattice E* in 
the five-dimensional configuration space V which is 
projected parallel to V~ onto M* and is invariant 
under the action of the group D~oh can then be 
written as d* = (a*, 0, ca* ) with i = 1,...,4 and d~ = 
(0, a*, 0) (short D basis). The parameter c can be 
chosen arbitrarily without any consequence for the 
physical space. If we refer the vectors a* to a five- 
dimensional orthogonal coordinate system with unit 
vectors vi, vi* with vi.vj* = 60. (short V basis) then we 
obtain the expression di * =  a;*(cos2"rr//5, sin2m/5, 0, 
ccos6zr//5, csin67r/-5) with i = 1,...,4 and d ~ = ~  
(0,1,0). It should be kept in mind that the vectors vi, 

with i = 1, 2, 3 belong VE and those with i = 4, 5 
to V~. The reciprocal-lattice vector on the D basis has 
the form H = 5"./5= ih,d*. 

The basis of the direct five-dimensional lattice E is 
easily constructed by using the relationships d* = 

, 5_ , = l /a*Y~-  with (Uj0 ~-- ai E}= I. U~ivj and di _ lUq¥i, 
[(uii) ' ] "  and we obtain di = 2/(5ai )(cos2"rd/5 - I, 
sin2"rr//5, 0, ccos67r//5- 1, csin67r//5) with i = 1,...,4, 
ds = l/a*(0, 0, 1, 0, 0) and diM* = 5 U. The metric 
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tensor g of the lattices ~;* and ~E for the simple case c 
= 1 is given by 

A C C C O  
C A C C ~  

g =  C C A C  
C C C A O  
0 0 0 0 

with A = d*.d* = 2a~2, B = ~ . ~  = a .2 and C = 
di*.dj~i* = - 1/2a .2 = d*dTcosl04.5 ° for the recipro- 
cal lattice 'E* and A = di.di = 4/(5a'2), B = ds.ds = 
1/a .2 and C = d,.dj,,, = 2/(5a .2) = d, djcos60 ° for the 
direct lattice ~E. Inserting the experimental values 
a* = 0.2556 (1) A -~, i = 1,...,4 and as * =  
0-08065 (5)A-~ (Steurer & Mayer, 1989) we obtain 
d*=2~/2a/*=0.3615(1)A,-1, i = l ,  4 and d~'= 
0.08065 (5) ,~-~ and di = 2/(51/2a *) = 3.499 (1) ,~, i =  
1, 4 and d5 = 12.400 (7) A,. 

Since it is impossible to determine a* in a unique 
way we always have the possibility of taking multi- 
ples of m* or a*/r instead. But this has no influence 
on the absolute distances between the peaks in a 
Patterson diagram. 

Experimental 

The preparation of crystals of the sample was 
described by Steurer & Mayer (1989). The crystal 
was mounted on top of a glass capillary with the 
tenfold axis approximately parallel to the capillary, 
Because of the pseudoicosahedral symmetry, the 
search for metrics was not successful. Therefore the 
crystal was first aligned by X-ray film methods and 
the metrics then easily found. The lattice parameters 
were refined from a set of 25 reflections. 

Data collection: Enraf-Nonius CAD-4 four-circle 
diffractometer, Mo Ka radiation, graphite mono- 
chromator. In a first run all reflections in the asym- 
metric unit within 0 -< 0 < 30 ° and - 3 _< hi < 3 (i = 
1, 4), 0 _< h5 -< 17 were collected with a constant scan 
time of 4 min per reflection. Of the 1807 reflections 
measured 332 had intensities I >  20(/) and were 
measured again with the symmetrically equivalent 
reflections in all decants. 

The full set of 5189 reflections was averaged with 
an internal R factor Ri=0.052 yielding 1807 
independent reflections. The standard deviations 
were calculated from the averaging of at least ten 
intensities in each case. 

Systematic absences: 0000hs and h~h~OOh5 with h5 
= 2n + 1 indicating a tenfold screw axis 105 parallel 
[00001] and a glide plane {11000} with a glide com- 
ponent of ~ along [00001]; the absences were consist- 
ent with five-dimensional space groups PlOs/mmc or 
PlOsmc. With convergent-beam electron diffraction, 
a reflection plane perpendicular to the tenfold axis 
was found (Bendersky, 1985) ruling PlOsmc out. 

Higher-dimensional Patterson functions (PF's) 

The principles 

The higher-dimensional PF has been used success- 
fully in the analysis of incommensurately modulated 
structures (Steurer, 1987; Steurer & Jagodzinski, 
1988) and can be applied to the analysis of quasicrys- 
talline structures in an analogous manner (Cahn, 
Gratias & Mozer, 1988). Geometrically, the 
Patterson function is defined as the map of all pos- 
sible weighted vectors between the atoms of a crystal 
structure. In the case of an incommensurately 
modulated structure embedded in ~3+d space the 
atoms are continuous in the internal space. Conse- 
quently, the (3 + d)-PF is continuous in this space 
too. 

If we apply this approach to structures that are 
quasicrystalline in one, two or three dimensions then 
the n-dimensional atoms can be represented by 
spheres as usual in physical space and by lines, 
pentagons or triacontahedrons, respectively, in 
orthogonal subspace. The n-dimensional PF 
represents the weighted-vector diagram between such 
n-dimensional atoms. 

What can we learn from such a higher-dimensional 
PF? First, we obtain information about the occupa- 
tion of the equipoints in the unit cell and can 
compare it with mathematical models (two- or three- 
dimensional Penrose quasilattices, for example). It 
can be easily recognized whether or not only the 
vertices of a quasilattice are decorated since in that 
case additional sites in the n-dimensional unit cell 
would be occupied or the atoms would be enlarged 
parallel to the internal space V~. Second, we get an 
idea about the amount of displacive disorder in both 
the external and the internal spaces by studying the 
half-widths of the Patterson maxima in both spaces. 
Third, at least in some special cases, the local 
isomorphism class can be determined because the 
size, shape and distribution of the n-dimensional 
atoms in the n-dimensional unit cell depend on the 
local isomorphism class. 

In contrast, the conventional three-dimensional PF 
allows a better visualization of the real crystal struc- 
ture but the identical information content is much 
more difficult to interpret and to characterize. A 
combination of sections of both types of PF's will 
give the most transparent structure information (eft 
Cahn, Gratias & Mozer, 1988) showing the corre- 
spondence between n-dimensional and real structure 
directly. 

Symmetry and metrics in Patterson space 

The five-dimensional PF can be calculated with the 
formula P ( U ) =  Y rd(H)cos(2"rtl-l.U). U is the five- 
dimensional vector U=~S=~u,di and H the five- 
dimensional reciprocal-lattice vector H = E~=~h,d['. 
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The vector lattice obtained (D basis) is inherently 
centrosymmetric and has the supersymmetry 
PlO/mmm. Transforming the indices using the rela- 
tion h~. = Y.~= ~Uuh j we switch to the V basis and the 
diffraction vector becomes H = HE + H~ = 
Y.5=~h~,a*v*. The metric tensor g of the resulting 
vector lattice (V basis) is simply 

A 0  0 0 0 

g =  0 A 0 

00 0 0 A O  
0 0 0 

x 2 1 

u 2 1 

0 

' ~ ~-~o ~:~ @ 

XL 

0 1 2 

X 1 
(a) 

¢-7~ --~. 
1 

u 4 

u3 l 

0 2 
u 

(b) 

with A=v*.v*/(a*2) = 1/a *z and B = vs.vs/(as* * ,2 )=  
1/a .2. On the reciprocal V basis we find A = a*%*.v* 
= a .2 and B = -'*~'* -'* = a .2 The basis-vector • ~ 5  v 5  - v 5  • 

lengths on the orthogonal direct V basis correspond 
to 1/a* = 3.912 A, i = 1,...,4 and 1/a'~ = 12-400 A. 

Results and discussion 

Patterson functions in ff~4 and ~5 space have been 
calculated in two-dimensional sections as well on the 
D and V bases. The choice of the V basis allows a 
simple calculation of sections through physical space 
as well as sections combining arbitrary directions of 
the external and the internal space. Fig. 1 shows 
sections through the four-dimensional Fourier func- 
tion (4-FF) and four-dimensional Patterson function 
(4-PF) of a hypothetical two-dimensional quasicrys- 
tal structure and the 4-PF of the projected structure 
of decagonal A1-Mn calculated from the (h~h2h3h40) 
reflections only. Since the projected structure of 
decagonal A1-Mn has Czov symmetry, a comparison 
has been made using the only quasilattice exhibiting 
exactly this symmetry, the exceptionally singular 
Penrose quasilattice (Jarir, 1986), which is decorated 
with atoms on the vertices. The structure factors for 
this quasilattice have been calculated by the formula 
derived by Janssen (1986a) and denoted as equation 
(16) by him. Additionally, an artificial overall atomic 
scattering factor (that for A1) and an overall iso- 
tropic temperature factor (B=  1.4 A 2) have been 
applied for both spaces. The reflection indices have 
been limited to sin0/,~ -- 0.7 A -  ~ for the components 
HE. The infinite number of theoretically possible 

u 2 1 

0 1 

u4 

u 3 ! 

0 2 

tl 

(c) 
Fig. 1. V basis sections of (a) the four-dimensional FF of a hypothetical two-dimensional quasicrystal with an exceptionally singular 

Penrose quasilattice, (b) the four-dimensional PF therefrom and (c) the four-dimensional PF of the projected structure of decagonal 
A1-Mn obtained from a calculation using (h,hzh3h40) reflections only. In all cases the (1100) section and the (1010) section orthogonal 
to it as well as (0101) are plotted. This combination illustrates the correspondence of the Patterson peaks in physical and 
four-dimensional space. 
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reflections within this region has been limited by the 
condition IHd-< Ia~xl .  The section of the 4-FF 
given in Fig. l(a) clearly shows the positions of the 
five pentagonal atoms on the body diagonal of the 
four-dimensional unit cell at p(½ ½~ 5) with p = 0,...,4 
illustrated in Fig. 3 of Janssen (1986b). 

What then is the meaning of the components of 
the atomic scattering factor and the temperature 
factor parallel to V~? The smearing of the five- 
dimensional atoms corresponds to a kind of periodic 
disorder, the phason strain (Socolar, Lubensky & 
Steinhardt, 1986). Practically, it results in the appear- 
ance of some additional atoms in physical space but 
with lower probability the farther away from the 
center the four-dimensional atom intersects the real 
space. Another possible interpretation is that these 
larger atoms correspond to a special decoration of 
the basic quasilattice. 

A comparison of the PF of the Penrose tiling with 
that of the decagonal phase (Fig. 1) shows that all 
peaks of both Patterson diagrams coincide although 
their heights naturally are different. The widths of 
the maxima in the physical space VE are similar 
indicating a normal temperature factor for the atoms 
of the decagonal phase. This means that the atoms 
show no large shifts from their mean positions. 
Consequently, there cannot be much displacive dis- 
order (relaxation effects) in the layers. The widths of 
the Patterson peaks parallel to VI are, however, even 
larger than those simulated with the temperature 
factor for the model structure. This means that 
additional sites are occupied compared with the 
Penrose quasilattice. If this elongation of the atoms 
parallel to V~ is present in all unit cells of the 
five-dimensional 'real' quasicrystal and is not the 
result of space and time averaging over the whole 

crystal then it corresponds to an ordered decoration 
of the fat and thin rhombi of the basic quasilattice. If 
it results from an averaging of five-dimensional 
atoms statistically fluctuating parallel to V~ around 
their mean positions then statistical substitutional 
disorder exists in the quasicrystal. Without a quanti- 
tative analysis of the diffuse scattering we cannot 
distinguish between these different cases. 

Fig. 2 demonstrates that this elongation of the 
atoms parallel to V~ in comparison to V~ is not due 
to a strongly asymmetric distribution of Fourier 
coefficients (reflection intensities) in the internal and 
external spaces leading to series-termination effects 
as is the case, for example, for the six-dimensional 
PF's of icosahedral AI-Mn-Si shown in Cahn, 
Gratias & Mozer (1988)• 

The layer structure 

For the study of the layer structure different sec- 
tions on the V basis have been calculated• Fig. 3 
shows characteristic Patterson diagrams• They can be 
referred to a layer structure as demonstrated schema- 
tically in Fig. 5(b). The distances between the layers 
are not uniform as assumed recently (Yamamoto & 
Ishihara, 1988) and the layers are split indicating a 
slight roughening (about +_ 0.t A). Additionally, as 
can best be seen from the the layers of Patterson 
peaks with u3 = 0 and ~ some maxima are elongated 
normal to the layers. This suggests displacive dis- 
order in this direction whereas the layers themselves 
appear to be well ordered considering the atomic 
positions only. Such a puckering of the layers can be 
expected as a relaxation effect since the lattice points 
(vertices) of a quasilattice have, unlike the three- 
dimensional translation lattices, different local 
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coordinations. Kumar, Sahoo & Athithan (1986) in 
their model of the decagonal A1-Mn structure found 
significantly different volumes of the Voronoi cells 
occupied by A1 which would lead to a relaxation of 
the lattice. This can occur in a more-or-less ordered 
way. 

From the absent three-dimensional Patterson peak 
(0 0 )) we learn that the layers must lack tenfold 
rotational symmetry and an inversion center. Other- 
wise the action of the 10s screw axis would generate 
atoms sitting one above the other giving rise to such 
a peak. Therefore the layer symmetry is 5m only. 

To be sure that no other Patterson peaks exist 
between the layers shown in Fig. 3 we had to plot the 
three-dimensional PF to infinity for u~ and u2. A 
better way to represent the same information is in a 

single section of the periodic five-dimensional PF 
(Fig. 5a). There are no other Patterson maxima in 
the five-dimensional unit cell of the vector space 
apart from those given in this section at ( -2p /5  0 0 
-2p/5 0) with p--0,...,4. This corresponds to 
equidistantly spaced peaks on the body diagonal 
[11011] of the four-dimensional subcell on the D 
basis with the coordinates up = (p/5 p/5 us p/5 p/5), p 
= 0,...,4. These are the same equipoint positions 
which are occupied in the four-dimensional descrip- 
tion of the general Penrose quasilattice. The 
n-dimensional atoms (occupation domains) of the 
different local isomorphism classes of Penrose pat- 
terns always occupy the same equipoint positions, 
and only differ in their size and shape [cf. Fig. 10 of 
Pavlovitch & K16man (1987)]. What then is the 
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action of the hyperscrew axis on a pentagonal atom 
on such a special site? If Xp = (p/5 p/5 x5 p/5 p/5) 
denotes the five-dimensional positional vector of the 
atom p then a rotation of 36 ° acts like F0X)Xp = 
( -p /5  -p/5  xs + ~ -p /5  -p/5). This corresponds to 

+ 1  • • (2p/5 0 x5 ~ 2p/5 0) on the V basis. The mirror plane 
F(I~) is parallel to the aperiodic layers and only 
changes x5 to 1 _ x5 by its action on Xp. The inversion 
center F(~,) reverses the sign of Xp. 

The structure of the layers 

Sections of the five-dimensional PF corresponding 
to the characteristic layer distances have been calcu- 
lated (Fig. 4). All peaks are distributed equidistantly 
along the [11011] direction as is the case for all types 
of two-dimensional Penrose tilings. For each differ- 
ent layer the distance u3 corresponds to a characteris- 
tic distribution of the heights of the Patterson 
maxima, indicating incomplete Penrose tilings. The 
action of the tenfold screw axis, visible in the section 
with u3 = ~, consists in interchanging the positions of 
the five-dimensional atoms on the [11011] axis. 

From the analysis of the Patterson diagrams one is 
able to suggest a model for the five-dimensional unit 
cell as is shown in Fig. 5(b). It consists of two layers 
A and B both corresponding to partial Penrose 
patterns with plane symmetry 5m. It is comparable in 
its principles with the model suggested by 
Yamamoto & Ishihara (1988) which, however, is not 
in agreement with our Patterson analysis. It is not 
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Fig. 5. (a) Five-dimensional PF of decagonal A1-Mn showing the 

section parallel to (10110). The direction [10010] on the V basis 
corresponds to the direction [11110] on the D basis about which 
the structure elements of the Penrose tiling are centered. (b) A 
model for the characteristic section of the five-dimensional unit 
cell of decagonal A1-Mn derived from the five-dimensional PF. 
The large/small circles are responsible for the large/small Pat- 
terson peaks. The symmetry elements iri this plane are marked 
(o inversion center, t 105 axis and m reflection plane). The 
layers are denoted by A and B. The action of the screw axis is 
marked by the superscripts ' and of the mirror by - .  

practically possible to extract from the shape of the 
peaks of the five-dimensional PF the correct size and 
shape of the five-dimensional atoms and to plot with 
this information the three-dimensional quasicrystal 
structure. This could only be done by a quantitative 
five-dimensional structure refinement. However, we 
can derive the local isomorphism class of the basic 
quasilattice considering the missing Patterson vectors 
(0 0 ½ 0 0). From this it follows that the site with p = 0 
is not occupied by an atom. On the other side, the only 
local isomorphism class of general Penrose patterns 
that is generated by four occupation domains in the 
four-dimensional unit cell is that with y = 0 [in the 
terminology of Pavlovitch & K16man (1987)], the one 
the original Penrose tiling belongs to. All others are 
generated by five atoms in the unit cell. 

Summary 
It has been shown by a five-dimensional Patterson 
analysis using X-ray single-crystal data that the 
quasicrystal structure of decagonal A1-Mn consists 
of six slightly puckered layers. Two of these belong 
to the asymmetric unit, the others are generated by 
the action of the tenfold screw axis and the reflection 
plane perpendicular to it. The structure projected 
along the screw axis has the two-dimensional point 
symmetry 10mm (C~o~), and shows a four- 
dimensional Patterson diagram similar to that of the 
exceptionally singular Penrose quasilattice which has 
the same symmetry. The distribution of atoms in the 
five-dimensional unit cell has been obtained from the 
five-dimensional PF and it was shown that the local 
isomorphism class of the original Penrose tiling is the 
only one possible. The layers, with plane symmetry 
5m, correspond to partial Penrose quasilattices. The 
exact shape of the five-dimensional atoms and corre- 
sponding therewith the correct structure of decag- 
onal AI-Mn in physical space (the decoration of the 
basic Penrose quasilattice) can only be obtained by a 
subsequent five-dimensional structure refinement. 
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Structure Refinements of Mg2TiO4, MgTiO3 and MgTi205 
by Time-of-Flight Neutron Powder Diffraction 
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Abstract 

Rietveld refinements using time-of-flight neutron dif- 
fraction data are reported for two forms of Mg2TiO4 
(Mr=160-51), MgTiO3 (Mr=120.20) and two 
samples of MgTi205 (Mr = 200" 10). The compounds 
were synthesized at 1673K and subsequently 
annealed and quenched from other temperatures. All 
data were collected at room temperature on a 10 m 
powder diffractometer at a nominal scattering angle 
of 150 ° 20. Mg2TiO4 annealed at 973 K has the 
spinel structure, space group Fd3m, with a =  
8.4376(5),~, V = 6 0 0 . 7 1 ( l l ) A  3, Z = 8 .  Mg2TiO4 
prepared at 773 K is tetragonal, space group P4122, 
a = 5.9748 (5), c = 8.414 (7) A, V= 300.37 (7) A 3, Z 
= 4. Final weighted-profile R values are 0.0376 and 
0-0327 for the cubic and tetragonal spinels, 
respectively. In the cubic form, Mg and Ti are dis- 
ordered in a single octahedral site to form a nearly 
perfect inverse spinel, although there may be con- 
siderable short-range order. The tetragonal structure 
is a slight distortion of the cubic one, with two 
inequivalent octahedral sites over which the Mg and 
Ti are highly, but completely, ordered. MgTiO3 
annealed_at 1073 K has the ilmenite structure, space 
group R3, a = 5.05478 (26), c = 13.8992 (7)/~, V = 
307.56 (4) A 3, Z = 6. The final Rwp is 0.0257. Mg and 
Ti are completely ordered between two octahedral 
sites, and probably remain so at temperatures up to 

* Present address: Hughes Research Laboratories, 3011 Malibu 
Canyon Road, Malibu, CA 90265, USA. 

"[" Author to whom correspondence should be addressed. 

0108-7681/89/060542-08503.00 

at least 1673 K. MgTi205 has the pseudobrookite 
structure, space group Bbmm, Z = 4. A specimen 
quenched from 973K has a=9.7289(9),  b =  
10.0057 (9), c = 3.7416 (3) A, V= 364.22 (10)/~3. A 
second specimen, quenched from 1773 K, has a = 
9.7492 (9), b = 9.9896 (10), c = 3.7460 (4)/~, V= 
364.82 (10)/~3. Final Rwp are 0-0251 and 0.0230 for 
the 973 and 1773 K samples, respectively. The 
Mg-Ti distribution in both samples is disordered, 
with the 1773 K sample substantially more dis- 
ordered. The lattice parameters of MgTi205 are sen- 
sitive to the degree of disorder. These results have 
been combined with thermochemical data obtained 
on the same specimens to derive an understanding of 
the effects of order-disorder on the phase-stability 
relations of these compounds. 

Introduction 

The magnesium titanates Mg2TiO4, MgTiO3 and 
MgTi205 are important as components in industrial 
ceramics and natural mineral systems. An under- 
standing of the structural variations observed in 
these compounds and their effects on the stability 
relations in the system MgO-TiO2 would be bene- 
ficial for estimating properties in more complex 
systems with related structures. The thermodynamics 
of these materials has recently been investigated by 
Wechsler & Navrotsky (1984). In order to charac- 
terize the structural state of samples used for thermo- 
chemical measurements, we have refined the 
structures of these compounds. 

© 1989 International Union of Crystallography 


